199 research outputs found

    State Information in Bayesian Games

    Full text link
    Two-player zero-sum repeated games are well understood. Computing the value of such a game is straightforward. Additionally, if the payoffs are dependent on a random state of the game known to one, both, or neither of the players, the resulting value of the game has been analyzed under the framework of Bayesian games. This investigation considers the optimal performance in a game when a helper is transmitting state information to one of the players. Encoding information for an adversarial setting (game) requires a different result than rate-distortion theory provides. Game theory has accentuated the importance of randomization (mixed strategy), which does not find a significant role in most communication modems and source coding codecs. Higher rates of communication, used in the right way, allow the message to include the necessary random component useful in games.Comment: Presented at Allerton 2009, 6 pages, 5 eps figures, uses IEEEtran.cl

    Distributed Channel Synthesis

    Full text link
    Two familiar notions of correlation are rediscovered as the extreme operating points for distributed synthesis of a discrete memoryless channel, in which a stochastic channel output is generated based on a compressed description of the channel input. Wyner's common information is the minimum description rate needed. However, when common randomness independent of the input is available, the necessary description rate reduces to Shannon's mutual information. This work characterizes the optimal trade-off between the amount of common randomness used and the required rate of description. We also include a number of related derivations, including the effect of limited local randomness, rate requirements for secrecy, applications to game theory, and new insights into common information duality. Our proof makes use of a soft covering lemma, known in the literature for its role in quantifying the resolvability of a channel. The direct proof (achievability) constructs a feasible joint distribution over all parts of the system using a soft covering, from which the behavior of the encoder and decoder is inferred, with no explicit reference to joint typicality or binning. Of auxiliary interest, this work also generalizes and strengthens this soft covering tool.Comment: To appear in IEEE Trans. on Information Theory (submitted Aug., 2012, accepted July, 2013), 26 pages, using IEEEtran.cl

    A Stronger Soft-Covering Lemma and Applications

    Full text link
    Wyner's soft-covering lemma is a valuable tool for achievability proofs of information theoretic security, resolvability, channel synthesis, and source coding. The result herein sharpens the claim of soft-covering by moving away from an expected value analysis. Instead, a random codebook is shown to achieve the soft-covering phenomenon with high probability. The probability of failure is doubly-exponentially small in the block-length, enabling more powerful applications through the union bound.Comment: IEEE CNS 2015, 2nd Workshop on Physical-layer Methods for Wireless Security, 4 page

    Optimal Equivocation in Secrecy Systems a Special Case of Distortion-based Characterization

    Full text link
    Recent work characterizing the optimal performance of secrecy systems has made use of a distortion-like metric for partial secrecy as a replacement for the more traditional metric of equivocation. In this work we use the log-loss function to show that the optimal performance limits characterized by equivocation are, in fact, special cases of distortion-based counterparts. This observation illuminates why equivocation doesn't tell the whole story of secrecy. It also justifies the causal-disclosure framework for secrecy (past source symbols and actions revealed to the eavesdropper).Comment: Invited to ITA 2013, 3 pages, no figures, using IEEEtran.cl

    Rate-Distortion Theory for Secrecy Systems

    Full text link
    Secrecy in communication systems is measured herein by the distortion that an adversary incurs. The transmitter and receiver share secret key, which they use to encrypt communication and ensure distortion at an adversary. A model is considered in which an adversary not only intercepts the communication from the transmitter to the receiver, but also potentially has side information. Specifically, the adversary may have causal or noncausal access to a signal that is correlated with the source sequence or the receiver's reconstruction sequence. The main contribution is the characterization of the optimal tradeoff among communication rate, secret key rate, distortion at the adversary, and distortion at the legitimate receiver. It is demonstrated that causal side information at the adversary plays a pivotal role in this tradeoff. It is also shown that measures of secrecy based on normalized equivocation are a special case of the framework.Comment: Update version, to appear in IEEE Transactions on Information Theor

    Gaussian Secure Source Coding and Wyner's Common Information

    Full text link
    We study secure source-coding with causal disclosure, under the Gaussian distribution. The optimality of Gaussian auxiliary random variables is shown in various scenarios. We explicitly characterize the tradeoff between the rates of communication and secret key. This tradeoff is the result of a mutual information optimization under Markov constraints. As a corollary, we deduce a general formula for Wyner's Common Information in the Gaussian setting.Comment: ISIT 2015, 5 pages, uses IEEEtran.cl

    Secure Cascade Channel Synthesis

    Full text link
    We consider the problem of generating correlated random variables in a distributed fashion, where communication is constrained to a cascade network. The first node in the cascade observes an i.i.d. sequence XnX^n locally before initiating communication along the cascade. All nodes share bits of common randomness that are independent of XnX^n. We consider secure synthesis - random variables produced by the system appear to be appropriately correlated and i.i.d. even to an eavesdropper who is cognizant of the communication transmissions. We characterize the optimal tradeoff between the amount of common randomness used and the required rates of communication. We find that not only does common randomness help, its usage exceeds the communication rate requirements. The most efficient scheme is based on a superposition codebook, with the first node selecting messages for all downstream nodes. We also provide a fleeting view of related problems, demonstrating how the optimal rate region may shrink or expand.Comment: Submitted to IEEE Transactions on Information Theor
    • …
    corecore